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Abstract

Sufficient conditions are given for optimum causal feedback to increase

information capacity for the discrete-time additive Gaussian channel. The

conditions are obtained by assuming linear feedback and reformulating the

problem into an equivalent no-feedback problem.
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Introduction

Information capacity of the discrete-time additive Gaussian channel with

feedback is an open problem. It has long been speculated that causal feedback

can increase capacity. We give here sufficient conditions for optimum causal

linear feedback to increase information capacity for any fixed value of the

constraint, for all values of the constraint, and for all suff.ciently large

values of the constraint.

A special case of these results is for the finite-dimensional channel

with a pure power constraint. The method developed here gives the solution for

that case in a particularly easy fashion, see [1].

Recent work on the capacity of feedback channels has been done by Ihara

[2] (for the finite-dimensional channel) and by Cover and Pombra [3].
d,

Problem Statement

The capacity problem will be considered for both the infinite-dimensional

and the finite-dimensional discrete-time additive Gaussian channel. However,

the setup will be given only for e2; it will be seen (by substituting RK for

e 2) that the procedure also applies without change to IRK, although of course

the finite-dimensional channel is much simpler and does not require the full

development given here.

All stochastic processes are defined on a probability space (f,.3,j): E(-)

will denote expectation with respect to 11. 11x11 will denote the e norm of the
2

vector x: Ilxll 2 = 2 [x(n)]2 .
n~l

The channel output is Y = X - BY + N. where N is additive zero-mean

G Gaussian noise with strictly-positive trace-class covariance matrix R X is a
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message process independent of N, and B is a Hilbert-Schmidt strictly-lower-

triangular (HSSLT) matrix: I b2  < co and b = 0 for j i all i 1 The
i. j~l ij =ii o i l i 1 h

mutual information of interest is that between X and Y. denoted I(X. Y). The

constraint will be given in terms of a trace-class covariance matrix RW. Any

constraint must imply a constraint of this form if the capacity is to be

finite [4]. The class of admissible message processes X and HSSLT matrices B

consist of all X such that almost all sample paths of X belong to range(R ).

2 2 - 2range(B) is contained in range(R, and EX-BYIIw P. where llull 2 = llRw ull.

The capacity is then the supremum of the mutual information I(XY) over all

such admissible pairs (XB).

The feedback capacity will be denoted by CwF(P). The capacity of this

channel without feedback is for the case B = 0, so that the constraint is

EIIXII2 < P. This capacity will be denoted by Cw(P).

The assumptions that R. and RW are strictly-positive can be dropped.

Attention can be restricted to range(RN); in order to have finite capacity,

one must then have that RW is strictly positive as an operator in range(RN);

see [4] for details. However, without loss of generality, it is assumed here

that both R1 and RN are strictly positive.

Preliminaries

This section contains several mathematical definitions and small results

that will be needed to prove the main result. It will be seen that much of

this is obvious when one treats IK.R

e 2O2 will denote the set of all Hilbert-Schmidt operators mapping t2

into R2" A is in e 22 if and only if A has a matrix representation such that

12/3/87 - 2
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1 [A(ij)] 2 < w. For A and A2 in e2 e2 . define

<A A2 > = Trace AA 2

= AI(ij)A2(ji).
i j

<.,->@ defines an inner product on e 2e 2 , and it is known that e 2e 2 is a

Hilbert space under this inner product [5]. Moreover, convergence of a

*sequence (An) in R2 2 to an element A in t2®2 implies that 1A -All -+ 0 and

thus Ax -+ Ax for allixin R2

(6 n) will denote the natural basis vectors in e : 6 (i) = 0 for i 9 n,

6 n(n) = 1. Let Hn = span{6 i. i < n} and denote by Pn the projection operator

with range space H . P is a diagonal matrix with Pn (ii) = 1 for i n;"en n n

P (i.i) = 0 for i > n.

Lemma 1: Let Rn be the matrix PR,.P
W n n

R(ij) = RW(ij) for i < nj < n

= 0 otherwise. Then:

(I) ~ V V for a lower triangular matrix V with V (ii) = c for i _ n,
nn n n i

6=where 11 c = determinant n
-, i=l

.p. (2) V x = 0 for al Ix in H;,"r .n n

(3) Ifm > n. V = PV

n nm

(4) (Vn) is a Cauchy sequence in S2@R2;

(5) RW V where V is a unique lower-triangular Hilbert-Schmidt matrix

such that V(i i) = c for all i > 1. and V = lim V in the topology of

e 2R Moreover, V P V for n > 1.
2 2' n n

Proof: Since H can be identified with R. and N with a covariance matrix in
nn

" n, (1) is obvious, as is (2). To see (3), if i.j < n and m > n, then

12/3/87 - 3
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Sinc PVi) lower ) traglr2 V (i) V i)= i)fokl n n

~ m 2

TraceV (Vi)[ -V -1j).1 =6

m nm

conres atozerio as =n s unqu showin th diV) na imns ach in are~

Toxe ob ti (5),owe firt real tha covrec in e ipisnr

convrenceto the shate limi [5] so ther exst by (4) athbr-Shmd

oprator (V suc tatV - 2 V in bot and oprao nom VI( V1) mus then,1

n nn

V converges to imn opraonr.Sg the ise ofch boneinear2

oprTor oan (5) is a is raccsae underth coeratore Inr [6] ampliushnor

Hovrec otesmelmt[] otee xssb 4 ibert-Schmidt, ic

opeato V uchtha V +Vi tcelass.dToertat VomV must ehwer

torgelr ote i tht optr nnrm toolgy 0,oand r, V)V V) =s

V V* covre SoRincoerao Vn no 0rm Sic th ie and all nde ,inolowa ta

opertor = or e is a 1.The same urtoso theorat Vnor) [6. fo Callh

HibetScmit S ince w is94  t .w rceedlas.befoe tota V mus Pe V.wer.

n n n n

If u and v are two vectors in R2 then u~v is defined to be the element
2'S

of e R defined by (u~v)x <v,x>u.

12/3/87 4 %



In order that the capacity without feedback be finite, it is necessary

and sufficient that RN = RN(I+S)R; where S is a self-adjoint operator in R2

such that (1+S) exists and is bounded [4]. The limit points of the spectrum

of S consist of all real numbers X such that X is either an eigenvalue of S of

infinite multiplicity, or the limit of a sequence of distinct eigenvalues, or
-l

a point of the continuous spectrum (i.e.. (S-xI) exists and is densely-

defined but not bounded). The set of limit points of S is not empty. For

discussion of these and related facts, see [6]. 6 will be used to denote the

smallest limit point of the spectrum of S. As in [4]. (Xn) will always be used ,:
n

to denote the sequence of eigenvalues of S that are strictly less than 8; they

are ordered by X1  X2 .< 
0, and repeated in the sequence according to

their multiplicity. Of course, there may not be any eigenvalues strictly less

than 6. If {Xn, n > 1) is not empty, thien {en . n>l} will denote orthonormal %

eigenvectors of S corresponding to the eigenvalues (C\n): Sen = X e . n 1.
nn n

With = R;.  = VL for L a unitary operator [7]. Since I + S

RW2RNRw2 (on the range of R). L (I+S)L = I + L SL = V 1 RNV *-I . As L is

unitary. LSL has the same spectrum as S, and so V- RNV* -I has the same I r

spectrum as I + S. Thus, 1 + 0 is the smallest limit point of the spectrum of -S

V RNV - and {l+Xk , k > 1) are the eigenvalues of V RNV* 1 that are strictly

less than 1 + 0.

Main Result

Theorem: Let V be a lower-triangular matrix such that R= VV. Fix P > 0.

(1) For the K-dimensional channel, let 1 2  K be the eigenvalues

of S. with J the largest integer K such that JP P + 1 " V

12/3/87 - 5
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CF(P) > CW(P) if the set of eigenvectors of V-1 RNV* -' corresponding to

the sequence of eigenvalues (1 + fi' i < J) does not contain J natural

basis vectors.

(2) For the infinite-dimensional channel, CWF(P) > CW(P) if the following

conditions are satisfied:

(a) {k k 1} is not empty; J

(b) If there exists a largest integer J such that jj P + 2 Xi. then
i--1

CVF(P) > CW(P) if the set of eigenvectors of V RNV corresponding

to the sequence of eigenvalues (1 + \k, k < J) does not contain J

natural basis vectors.

or (b') If JXj _ P + 2 X . for all XJ, then CW(P ) > C(P) if the subspacei = l 1j ,C q ( P C ( )

spanned by the eigenvectors of V 11¥NV*-' corresponding to the

sequence of eigenvalues (1 + k , k _ 1) does not contain a set of

natural basis vectors that is complete for that subspace and which

are eigenvectors of V RN V

Corollary:

(1) For the finite-dimensional discrete-time channel, causal linear feedback ,%

can increase information capacity for all P > 0 if the subspace spanned

by the eigenvectors of V -1RNV -1 corresponding to its smallest eigenvalue

does not contain a basis consisting entirely of natural basis vectors .t

which are eigenvectors of V RNV -
. Causal linear feedback can increase

capacity for all sufficiently large P if and only if V- RNV * -  is not

diagonal.

(2) For the infinite-dimensional discrete-time channel, causal linear

feedback can increase capacity for all P > 0 if {Xk , k > 1} is not empty

12/3/87 - 6



' pr

and the subspace spanned by the eigenvectors of V RV - 1 corresponding
,'%.

to its smallest eigenvalue does not contain a basis consisting entirely 'a

of natural basis vectors which are eigenvectors of V 1 RNV

CWF(P ) > CW(P) for all sufficiently large P if ({ k , k > 1) is not empty

and the subspace spanned by the eigenvectors corresponding to the

eigenvalues fl + k >_ 1} of V R.V does not contain a basis for the

subspace consisting entirely of natural basis vectors which are

eigenvectors of V -RNV

Remark: The sufficient condition in (2) giving CwF(P) > CW(P) for all

sufficiently large P is equivalent to the following statement: {Xk , k > 1} is

not empty, and the restriction of V- RNv w - I to the subspace spanned by the

eigenvectors of V-R corresponding to the eigenvalues {1 + X k > 1} is

not a diagonal matrix.

The results stated in (1) of the Corollary were proved in [1]. where the

development is much streamlined because of the simpler nature of the finite-

dimensional problem. That work used Rw = I. For the same finite-dimensional

channel and constraint, Ihara has obtained the result that capacity is 5

increased for all sufficiently large P if RN is not diagonal [2]. although his

result is stated in a different form; his methods are quite different from

those used here. He also gives as a sufficient condition for F > Cw(P)

for all P > 0 the condition that (in the terminology used here) RN has no

natural basis vectors as eigenvectors. The corresponding sufficient condition , -

given in (1) of the Corollary is much weaker.

I

12/3/87 - 7
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Reformulation of the Problem

In this section. the original linear feedback problem is converted into

an equivalent no-feedback problem. Originally, Y = X - BY + N, where the

matrix B is HSSLT. (I+B) exists, since B can have no non-zero eigenvalues;

(I+B) is bounded, since B is compact (and thus has only zero as a limit
-Ix  -IN -I.-l

point of the spectrum). Thus, Y = (I+B) X + (I+B) N. Since (I+B) is 1:1.

I(X. X+N) = I(X. (I+B) (X+N)) = I(X, Y).

Of course, the constraint EliX-BYIi 2 P is the same as EIIX-B(I+B)- (X+N)II2 < P.

Using Rw = VV with V Hilbert-Schmidt and lower triangular. the constraint can -'

be written

P > EIIV-1X - V-IB(I+B)- (X+N)II2

or,

P > EIIZ - D(V -1Z+N)II
2

-"1B(+B- 1  -"

* where D =V B(I+B) and Z = v-X. D is well-defined and bounded, since

range(B) C range(V) and (I+B) is bounded. Moreover, since B is HSSLT and both

V and (I+B) are lower triangular, D must be strictly lower triangular and

bounded (BSLT).

The feedback capacity problem under our initial assumptions thus becomes

maximize I(X, X+N)

-l 2
subject to P > EIIV-X - D(X+N)II

where D is permitted to be any bounded SLT matrix in R

This is actually the problem that will be considered below in obtaining

* the sufficient conditions of the Theorem and the Corollary.

12/3/S7 - 8 1
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Analysis a-

Let H(e22w) be the set of all real random vectors u on (Q,/3) such that
2'2

u(w) E a. e. dP(w) and E 2 [u(nw)] < -. H(e2 , ) is a Hilbert space under
-~n>1

the inner product (f,g) = E 2 f(nw)g(n.w). Let Y and Y be two mutually
Sn> 1 2

independent zero-mean Gaussian random vectors in e2: E Yl(n,w) = 0 for
2 Y1(m~w)Y2n& o

all n.m > 1. Suppose that Ry1+ 1' is strictly positive. Define H_(YI+Y 2) as
1 2

the set of all elements f in H(R22,4) such that f = B(Y 1+Y2 ) for some bounded

SLT matrix operator B. H_(Y1 +Y2 ) is clearly a linear manifold in H(e2 ,). To A

see that this linear manifold is closed, one notes that if (Bn) is a sequence

of bounded SLT operators,

= 22

IIBn(Y 1+Y 2 ) B I(Y+Y2) = II(Bn-Bm)(Y 1+Y2 )II "

n mn mTrace (Bn-B m)(Ryl+R, )(B -Bm)-
1 2

> ),(B BI)( Ry )211 >II2 I

where 0 is the smallest eigenvalue of RY+ Thus, (B n(y+Y 2  Cauchy in
1 2

H(e2,P ) implies that (Bn) is Cauchy in operator norm, so converges to a

bounded linear operator B. To see that B is SLT, one notes that

Rl + R 2 = QQ for some lower-triangular Q. and so (Ry +R- )2 = QT for T
1 2 1 2

unitary [8]. This gives

n 1 2

,IBn(Y l+Y 2 _ Bm(Yl+2H n_( -B')2 Ry
2) ,(BB )R +R1)

n m 2
SII(B -B )QII

Thus. (BnQ) is Cauchy in e OR so that BQ must be strictly lower triangular;
2 2'

12/3/87 - 9

I, ,

"¢' "-. ." '. - -" - , "- . .- " ,", ". " . ". "." " --"" . '-' ". . . "".... .',,',. ".- ',



since exists and is lower triangular, this shows that B is a bounded SLT

matrix operator, so that H_(YI+Y 2) is closed.

Now consider our feedback problem: We wish to maximize I(X, X+N) subject 91

to P > EV-X - D(X+N)II = lVI X - D(X+N)II, where D is permitted to be any

bounded SLT matrix. Given any choice of D that satisfies this constraint, we

-l -2 1l- 2 -
know that lv- X D(X+N)II > liv- X - P_(V-lx)l, where P_(V X) is the

projection of V X onto H_(X+N). Thus, we can assume WLOG that D is the

optimum bounded SLT matrix for minimizing the distance in H(e2, p) norm between

V-lX and H_(X+N); D(X+N) is the projection of V-1X onto H_(X+N).

Now, let X be the optimum no-feedback message for the case when capacity ,

is attained (assuming here that Cw(P) can be attained). As the message for the i

feedback problem, use aX. Then I(aX, aX+N) > Cw(P) if a > 1. Choose a to

satisfy the constraint: ,.

2t

P IiV-aX - D(aX+N)II2

a2 Tr V-'RxV - A,

where A A(a) is the H(e2 .p) norm of the projection of aV X on H_(aX+N). V

Since Tr V 1RXV- 1 = Tr RXRW= XI,= P. we have P = a2p - A, so that

a > I if aV-X is not orthogonal to H_(aX+N).

Prop.: aV- X is orthogonal to H(aX+N) if and only if RX is diagonal.

-12

Proof: Since X is independent of N. (aV- X, D(aX+N)) = a2Tr DRXV - =

a 2 Tr DV[V-'RXV-]. If V-IRXV*- I is diagonal, then (as DV is SLT)

Tr DRXV = 0 for every bounded SLT matrix D.

If Tr DRXV = 0 for every bounded SLT matrix D, take i,j with i > j.

12/3/87- 10
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Let D(kt) = 0 unless k = i. =;

D(ij) = 1.

Then, Tr DV(V RXV ) = (RxV )(ji) = 0. This shows that RXV must be

lower triangular, so that V RxV must also be lower triangular. Since

V Rxv s symmetric. V RxV must be diagonal. o3

In the above development, we have implicitly assumed that a always exists "

to solve the equation a2P = P + A(a). This is not obvious, as the subspace

H_(aX+N) changes with a. Here we will show that a lower bound a1 exists; i.e.,

-l 2a 1 > 1 and a bounded SLT D such that Ila1V X - D(alX+N)II2 = P.

Let D be the optimum SLT matrix to minimize IIV-IX - D(X+N)II . ThenDI-I-  T 'DID

Tr DRXV 1 = Tr DRXD * + Tr DRND * = A(1). Take a 9 0. Then llaV-lx - D(aX+N)9 =

a2(P- 2Tr DRX -V + Tr DRxD ) + Tr DRND. If P- 2Tr DRXV + Tr DRxD* s 0,

-l2 2 p
then one can set P = llaV X - D(aX+N)II and solve for a obtaining

P-Tr DR.D I
2I N

a f giving a > 1. .5-
P-Tr DRND*-A()"

To see that P- 2Tr DRX -V + Tr DRxD$ 0 when V Ip is not-

diagonal, we note that if inequality does not hold, then V- X - D(X+N)II =

P - A(l) = Tr DRND * . Similarly. for any a ; 0. IfaV-lX - D(aX+N)II =

a (P-2Tr DRXV +Tr DRxD) + Tr DRND Tr DRND. Thus, P A(a) Tr DRND

P - A(l), or A(a) > A(l), all a s 0. This cannot hold if V-RXV *- is not
2-1

diagonal, since A(a) _ a P. and A(l) s 0 when V-RxV* - 1 is not diagonal. .%

We have now shown that causal linear feedback can increase capacity

provided that V RxV* l is not diagonal, where RX is the optimum message t

covariance matrix in the no-feedback problem (whenever capacity can be %

attained in the no-feedback case). These conditions need to be converted into a
conditions on the noise covariance matrix RN and the constraint matrixw

12/3/87 - 11
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KThis will be done in the next two sections, treating the IR and 82 channels.

Finite-Dimensional Channel (IRK)

From Theorem 1 of [4]. the optimum no-feedback message has covariance

matrix given by

RX J 1 P 1 2 2 2 2
I %il nnn + nm~ uno~un=1  ~ n=1 m=l

-o

where {un , n _ K} are o.n. eigenvectors of S corresponding to the increasing

sequence of eigenvalues (P n ) and J is the largest integer K such that
a' J
SP + P i> J/3 Y Let L be the unitary operator in e2 such that R; VL. Then

i=1

J 1 J g n1( MnM(*n .

vy - [2 . + P-
J 1.1 ~ 'n'in"~n

-1; 1 
d1

Now, V 1RNV' = L (I+S)L, and Sun = PnUn , so

L (I+S)LL*Un = L *(I S)u n= (l+Pn)L Un;

i.e.. {L*U , n < K} are c.o.n. eigenvectors of V 1RNV-I corresponding to the

sequence of eigenvalues (1+Pn), n K. V-1RXVx '-I is then diagonal if and only

if (Lu, n < J} can be taken as natural basis vectors, proving (1) of the

Theorem. For all sufficiently small P > 0, :%

-1 *-1 P M
V RXV M 2 u n L u n.

n=1 n

where M is the multiplicity of the eigenvalue P1 of S, and of the eigenvalue

1 + Pl of V RNV - 1
. Thus, V RxV cannot be diagonal if {LUn , n < M}

cannot be taken as natural basis vectors. For larger values of P, when RX has

the representation given above for J ) M. then the eigenvectors of V -1RxV

must include {L un n M}. Now. if V-IRXV -1 is diagonal, then it must have a

12/3/87 - 12
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c.o.n. set of eigenvectors consisting of natural basis vectors. However,

span{L un , n < MI} cannot be spanned by M natural basis vectors, so that

V-RxV cannot have a c.o.n. set of eigenvectors consisting entirely of

natural basis vectors. This shows that CWF(P) > CW(P) for every P > 0 if the %

M-dimensional eigenmanifold of /l is not spanned by M natural basis vectors.

By letting P become sufficiently large, J = K. and then the above

-1 *E-l 1*lexpressions show that V RxV will be diagonal if and only if V % V *- is

diagonal: V V = _1 1 + P + K]I - V-IRNv - . This proves the
i=l

sufficient conditions of the Corollary.

To see that capacity cannot be increased by causal feedback if V- RNV*
- 1

is diagonal, one notes that the feedback capacity problem is that of
maximizing I(X, X+N) subject to the constraint EIIV 1 D(X,N) 2 P. where

~ n

n2 2lXlln I x i and D is a possibly non-linear operator depending only on thei=

past of the second coordinate (causal): [D(xy)] = D n
n n 1n-I . Wite the ( n

whereD 1 maps IK x into R. Write the constraint as EIIV- 1F(T,Z)II n( P. where

T = V 1 X, Z = V-1N, and F(x.y) = D[Vx.Vy]. Since V is lower-triangular and D

is causal in the second coordinate, F is also causal in the second coordinate.

I(XY) = I(V-Ix, V-1Y) = I[V-1X. V-1 D(XN) + V-IN] = I[T, V-IF(T.Z) + Z]. The

constraint is EIIV 1F(TZ)112 < P. and V-IF(x,y) is a causal function of y.

However, Z has covariance matrix V RNV -  Thus, if V RN -V is diagonal,

the original problem is equivalent to the capacity problem with causal

feedback when the channel is without memory. It is well-known that capacity

cannot be increased in this case.

This completes the proof of the theorem and corollary for the finite-

dimensional channel.

12/3/87 - 13
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Infinite-Dimensional Channel (e 2 )

First, assume that {x. n>} is not empty. Several cases need to be

considered. The various expressions for the optimum RX (when it exists) and

the value of Cw(P) are taken from [4].

(1) 2 (0-XN) < C.
n>l n

If P < 1 (O-n), then there exists finite J such that the optimum no-
n>l n

feedback covariance is given by [4. Theorem 3].

RX = 7 X + P/ I e Re - 2.2 Xne Oen ; *)
Ji=l 

.'n=l 
n q n nen

As in the finite-dimensional channel, this shows that VRxV will not be

diagonal if the subspace spanned by the eigenvectors of V-RNV' I

corresponding to the sequence of eigenvalues (1 + \k, k J) of V- 1Rv -

does not contain a basis consisting entirely of natural basis vectors which

are eigenvectors of V-RNV'- l.

If P = 2 (O-X ), then JXk P + 2 X for every Xj [4], and an optimum
n=l i=l

message covariance exists and is given by

.1. .1L 
.d,

RX = (0-N )Re n en.
n> 1

This gives

V RxV -  = 2 (-XN )(L*e )@(Le)
01 n n n

which is clearly diagonal if and only if {L e n n 1 } can be taken as natural

basis vectors.

If (X) is an infinite sequence and P > I (O-Xn), then capacity cannot be

attained in the no-feedback case. However, the capacity is given by lim IK(p),

12/3/87 - 14
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K~ K K
where I ()is the value of I(X ,X +N) when

K K K

Let AKi) be the squared H(e ii) norm of the projection of lK ot

H-(XK+N). If limsup A K(l) > 0, then as before the capacity can be increased.
K

* That is, we choose K sufficiently large so that I(aXK, aXK+N) > Cw(P). where

a> 1. a a-K(l). with aK<(l) satisfying 2K P I TrDRDwith D K
P P- Tr DKRNDK AK(l)

the bounded SLT matrix that minimizes EV IK-D ,XK+N)12TeIrbemiIo

reduced to showing that A K(l) -+ 0 cannot hold if there exists some J such that

(Le en n < J} cannot be taken to be natural basis vectors. Suppose such J

exists and take K > J.

Write X K OKX + X where Xi is the zero-mean Gaussian process with
OK 0K' OK

covariance matrix R

J K .N

A~(l) n=1 n1 n K -=O' 1o

and ~ - 0. Thi rsidpn equire O' s ha wE(Vcnege1 nXh peaornr

JJ
everly fietoune SI matri B. O2e usinc te XfandXaneenet thit2(- .Nwsups

thtmplihi eqies that E(V1 X IX >J +~ 0 for evrXone B. or +X +N> 0 o

OKK OK

K J*-l K J2 2(Tac N'V .Since -* (0-N )R e 0 as K -. this implies
n=l 1

J ~
(as in the proof of the Proposition) that 2 (@-X\n)L enOL en is diagonal. This

n= 1 S

cannot be, since by assumption (L *e n. n < J) cannot be taken as natural basis

12/3/87 -15



vectors. This shows that optimum feedback will increase capacity when

P > .- (B-n) and (Xn) is an infinite sequence.

Finally, suppose that (XN ) is a finite sequence, X _ X < .. < X and
n 1-2 K'

K
P > n (0-XN). Then there exists an infinite o.n. set {u n  n>l} such that

n1 n n -

II(S-OIIUnlI - 0 and un i span{e I .... eK) for all n 1 [6].

Fix M < - and take e > 0 such that 0 - XK > e.
M M

Let XM be the zero-mean Gaussian process with covariance matrix RM given

-K -Ii
1 KR= 2 2=~ +e 1R 21 n=L Kl+X n) nR N n~U

where < P.
1

Choose o.n. vectors u * ....u2  from the set {u * n > 1) such that1 n
M.6 M'6 M'eI((S-oI)u i  , u.' )i e for i < M. Let X2  be the zero-mean Gaussian process

Me 2
with covariance matrix R 2  given by

M.E I RM e - 2 M e
R2 - - ) 2 R'Uu. uu'

2 M(l+E0+E)_ N i Ni1.l

Now, let X be the zero-mean Gaussian process with covariance matrix

M e M e M M. F M'F.,e where =RI, + R 2 . Since u i  is orthogonal to span{e 1 . e} for

i <M,

M MeM M Mef MeF
I(XM ' , XM+N) ; I(X1  X+N) + I(X X2  +N)

K X +P - KX PM

n.l log[, + 1=1 K(+i 'n] + M log 1 +1n=1 K(+n)+

X satisfies the constraint for any PM < P. since

12/3/87- 16
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XM.2 6l - M M, .
EIX Trace %WR %w Trace Rw (R1+Rj 

2'

P + 1 M( + 8 + 6) P.

Now, define PM by

= M-1 KP- (M-K) I X. + (M-K)KO1= lIKP"i=- j,

Then 0

MM K + xi + KP + (MK)K8
(x, x1 +)= X 1N)og 2 1

n=1 MK( l+KXn)

n~n
As M -

M MK r1 +

I (XM. XM+N) I l1og[ 1 +x

Similarly,

M(1M6l+ ) + (M-K)[P + IK= X K03
X' +N) = 2 M log

As M-*

P + =l( i-.
l(X 2 X 2 +N) --+

2( 1+0+6)

Thus, I(X X M' +N) converges, as M -. , to

K r+ ,+ X.-6)
r1 og+ +

n=l n 1+-- +

From Theorem 3 of [4]. the capacity Cw(P) is equal to

K P + i(X-)I: log L-: J + 1+8 '-
2__ 21 + 0

n=l [1 1+6

12/3/87 - 17
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so that by choosing a sufficiently small and M sufficiently large, one can

obtain I(XM '. XM. +N) arbitrarily near CW(P).

As e -* 0 and M - 0 V- 1 M'V- *-
A R converges to a diagonal matrix, since

22

M ",

=<(s-0I)u * u§ >1 e for i -M. However,

VK X
1L K n nLe

n= I n=_

This matrix will not be diagonal if {L . nr K) cannot be taken to consist

entirely of natural basis vectors. This is equivalent to not having K natural

onto v ers a .e Ig_ _ 0 s of -RNV corresponding to the sequence of

M
eigenvalues (1 + Xk, k < K). Inserting the above definition of P.

1 K- *- K K
V RfV I IV 9 s dig)+ nal.+ I i KOIM onLe nLte n . This matrix is

1 n=I n IP jjj n

*independent of e; as M - 00. it converges in the operator norm topology to

V1 I 1~ *- K )e
V R I V (O-X n ) L~en Le n. Similar to the preceding part of the proof, weV

Pi Tr fl

n= 1
thbnddam e edne, =D-1 M

now consider AM(l) t e2p norm of the projection of V X

MeF
onto H(X +N). A M (1) -+ 0 as M cimplies, as in the preceding part of the

proof. that V 1R V is diagonal. This is a contradiction. In fact, A ()1 = -.

2 P - Tr D ,RNDM wit
is bounded away from zero. Define a P > O Dapacity ithe - -

Mke fPM.e P M 0 ter e J - o (th
D (X +N) the projection of V X onto H_(X +N). Since
M, F"

F(X . X +N .C~W(P) as e -+*0. M -*.and AM.,(l) is bounded away from

zero, we obanI(aM,, M .F aM..X M -+N) >CW,(P). This completes the proof of

sufficiency in part (2) of the Theorem when I ((O-X~ < (0.n n

(2) 2 (O-X n) -

In this case. P < I (O-;\ n for all P > 0. capacity is attained in the no-

feedback case for every P > 0, and for each P > 0 there exists j < (the

12/11/87 IS1
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value of J depending on P) such that the optimum message covariance matrix RX

is given as in (*). As in case (1). it is clear that feedback can increase

capacity if the set of eigenvectors corresponding to the sequence of

eigenvalues (1 + X, k < J) of V 1RNV*_ does not contain J natural basis

vectors.

This completes the proof of (2) of the Theorem. The proof of (2) of the

Corollary follows from (2) of the Theorem, in the same way that (1) of the

Corollary was obtained. o

Verification of the Sufficient Conditions

Verification of the sufficient conditions given in the Theorem is

equivalent to determining the value of Cw(P) . as can be seen from the

expressions for Cw(P) [4]. The difficulty of verifying the sufficient

conditions of the Corollary is considerably less than for the Theorem. We now

summarize how one can verify that CWF(P) ) CW(P) for all P > 0. This will be

done by giving conditions that are equivalent to the conditions given in (1)

and (2) of the Corollary for CwF(P) > Cw(P) for all P > 0.

Suppose that V-R.V -  is nondiagonal. Write

VRV = A -D
N

where D is a diagonal matrix whose non-zero elements D(i,i) are the diagonal

elements i.. of V R V such that (V IRV )(ij) = (V-R"V*-I)(ii) = 0 for
Ne N

all j d i. CWF(P) > CW(P) for all P > 0 if the following conditions are

satisfied.

1. Finite-Dimensional Channel.

inf <Ax,x> inf {D(i.i): D(i,i) > 0);
IIxII=l

12/3/87 - 19
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2. Infinite-Dimensional Channel.

(a) inf <Axx> < inf {D(ii): D(i.i) > 0};

IlxII=l

(b) inf <Ax.x> is an eigenvalue of V-IRNV -I of finite multiplicity;
IlxII=l

and

(c) if H0 is the subspace spanned by the eigenvectors of V RNV

corresponding to the eigenvalue inf <Ax,x>, then <
IlxII=l

inf <Axx> > inf <Axx>. V
IlxIl=l Ix"=1

x i n V
0

To see that (2) implies the corresponding sufficient condition in (2) of

the Corollary, one can verify that (2a) and (2b) imply that the smallest

eigenvalue of V 1 RNV 1- exists and does not have eigenspace containing a set

of natural basis vectors complete for the subspace; (2b) shows that the

multiplicity of this subspace is finite; and (2b) plus (2c) show that this

eigenvalue is not the limit of a sequence of distinct eigenvalues.

These conditions are not complex. Consider the finite-dimensional

channel. First, one inspects the matrix V 1RNV -1 and locates the diagonal

elements i.. such that the ith row and ith column are all zero except for the

ii element. Denote these elements as i.. This is the set of eigenvalues of

1~
V-1R V - corresponding to natural basis vectors as eigenvectors. If the

smallest such i . is strictly greater than inf <V R V x,x>. then the
1 Ixll=l

smallest eigenvalue of V RNV* has no eigenvectors that are natural basis

vectors, and so CwF(P) > CW(P) for all P > 0. If the smallest i'v is equal to

inf <V R N-V xx>. then one must determine the multiplicity of inf vI = - 0

Ilxll=l i

12/3/87 - 20
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as an eigenvalue of V RNV If this multiplicity is strictly greater than

the number of times mY appears among the {-r. i > 1), then again CWF(P) >

CW(P) for all P > 0.

Necessary Conditions

The Corollary shows that the sufficient condition for feedback to

increase capacity for all sufficiently large P is also necessary, in the case :. .

of the finite-dimensional channel. Although the emphasis here has been on

sufficient conditions, it is our conjecture that each of the four sufficient k
conditions given in the Corollary is also a necessary condition for the same

result.

Concluding Remarks 'S

It can be seen that the capacity problem with feedback for small P
I

reduces to consideration of the eigenmanifold for the smallest eigenvalue of

V RNV , for the finite-dimensional channel. If this eigenvalue hasN

multiplicity one, then feedback can increase capacity for every value of P if

the corresponding eigenvector is not a natural basis vector. -'..

In the case of the infinite-dimensional channel, the same situation

holds, except that the additional requirement is imposed of having the

smallest eigenvalue be strictly less than the smallest limit point of

V - 1 R.V
N

For the case of sufficiently large P, the problem can be couched in terms

of the reproducing kernel Hilbert space of Rr, say HIW. If the Gaussian cylin-

der set measure p on Hw defined by WN = poj 1  j the natural injection of Hw

into e 2 (i.e., jx is just x viewed as an element of P2 rather than as an ele-

ment of HW), has diagonal covariance operator, then CW(P) = C(P); otherwise,

12/3/87 - 21
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CWF(P) > C.W(P) for all sufficiently large P. In essence, this states that

capacity can be increased by feedback for all sufficiently large P if the

noise is correlated when it is viewed as belonging to Hw , rather than to "

The setup given here is rather general, and an obvious extension is to

apply the same approach to the time-continuous channel. However, the structure

of (Hilbert-Schmidt) Volterra operators is more complicated in L2[OT] than in
2,

R and an arbitrary covariance operator in L 2[OT] may not have a causal

decomposition of the form RW = VV V Volterra. Thus, a complete extension of

these results in the form stated here does not seem possible.
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